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Abstract— Recent years have witnessed a demand for 
software development era. In this paper presents a method to 
estimate the expected number of faults in the software in the 
early phase of its development and is based on the factors that 
influence software quality in the programming environment. 
The paper includes analysis of the five predicting variables 
and the required response variable to predict the early 
software reliability based on the previous data available. To 
predict the number of faults in the software before testing, 
data sets from previous projects are used. To evaluate the 
predictive capability of the developed model the predicted 
faults are compared with the actual faults. In this paper 
identifying the key influencing parameters are Techno-
complexity, Practitioner level, Creation Effort, Review effort, 
Urgency. 
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1. INTRODUCTION

     A software product can be released only after some pre-
specified reliability criterion has been met at the end of the 
development cycle. In recent years, researchers have 
proposed a number of analytical models for early software 
reliability prediction. The problem of developing reliable 
software at low cost remains an open challenge. To develop 
a reliable software system, several issues are to be 
addressed. These include specification of reliable software, 
reliable development methodologies, testing methods for 
reliability, reliability growth prediction modeling, and 
accurate estimation of reliability. The issue of finding a 
common model for all possible software projects is yet to 
be solved. Selection of a particular model is very important 
in software reliability growth prediction because both the 
release date and the resource allocation decision can be 
affected by the accuracy of prediction. 

     1.1THE NEED FOR RELIABLE SOFTWARE 

     The dependence on computers in a person’s daily lives 
has been increased as computers are embedded in 
wristwatches, telephones, home appliances, buildings, 
automobiles, and aircraft. All the industries including 
automotive, avionics, oil, telecommunications, banking, 

semiconductors, and pharmaceuticals- are highly 
dependent on computers for their basic functioning. The 
computer revolution is powered by an ever more rapid 
technological advancement. Science and technology 
demand high-performance hardware and high-quality 
software for making improvements. 

     The size and complexity of computer-intensive systems 
has grown dramatically during the past decade [10], and 
the trend will certainly continue in the future. 
Contemporary examples of highly complex hardware and 
software systems are the projects undertaken by NASA, 
the Department of Defense, the new generation air traffic 
control system, and a variety of other industries. In the 
offices and homes, personal computers cannot function 
without complex operating systems (e.g., Windows) 
ranging from 1 to 5 million lines of code provide a variety 
of applications for our daily use of these computers. 

     When the dependencies on computers increase, the 
possibility of crises from computer failures also increases 
since the demand for complex hardware and software 
systems has increased more rapidly than the ability to 
design, implement, test, and maintain them. The impact of 
these failures ranges from malfunctions of home 
appliances to economic damage (e.g., interruptions of 
banking systems) to loss of life (e-g., failures of flight 
systems or medical software). Therefore, assessing the 
reliability of computer systems has become a major 
concern for the society. 

     Software failures have delayed several high-visibility 
programs. Several Space Shuttle missions have been 
delayed due to hardware software interaction problems. In 
the highly automated aviation industry, misunderstandings 
between computers and pilots have been implicated in 
several airline crashes. Software failures also have led to 
serious consequences in business since a fault in a 
switching system's newly released software caused 
massive disruption of a major carrier's long-distance 
network. Software failures are more insidious and much 
more difficult to handle than the physical defects. 
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1.1.1 SOFTWARE RELIABILITY CONCEPTS 
      Software Reliability as an important quality attribute 
highly valued by customers and users and has the most 
significant impact on the performance. Software Reliability 
metric is used to help the managers to guide software 
development. Software reliability can be formally defined 
as the probability of failure-free software operation in a 
specified environment for a specified period of time. A 
software failure occurs when the behavior of the software 
departs from its specifications, and it is the result of a 
software fault, a design defect, being activated by certain 
input to the code during its execution. Generally, a 
software failure caused by software faults latent in the 
system cannot occur except for a special occasion when a 
set of special data is put into the system under a special 
condition, i.e. the program path including software faults is 
executed. Therefore, the software reliability is dependent 
on the input data and the internal condition of the program. 
In software, an error is usually a programmer action or 
omission that results in a fault. A fault is a software defect 
that causes a failure, and a failure is the unacceptable 
departure of a program operation from program 
requirements. When measuring reliability, we are usually 
measuring only defects found and defects fixed. Software 
reliability analysis is performed at various stages during 
the process of engineering software. The analysis results 
not only provide feedback to the designers but also become 
a measure of software quality.      
 

 1.2 SOFTWARE RELIABILITY MEASUREMENT 
 

     Measurement of software reliability includes two types 
of activities [10], reliability estimation and reliability 
prediction early during the development phase. 

          1.2.1 ESTIMATION 
      It is an assessment of how reliable a software system is 
now based on observed test data. This activity determines 
current software reliability by applying statistical inference 
techniques to failure data obtained during system test or 
during system operation. Its main purpose is to assess the 
current reliability and determine whether a reliability 
model is a good fit in retrospect. 

             1.2.2 PREDICTION 

      This activity determines future software reliability 
based upon available software metrics and measures. 
Depending on the software development stage, prediction 
involves different techniques:  

1. When failure data are available (e-g., software is in 
system test or operation stage), the estimation techniques 

can be used to parameterize and verify software reliability 
models, which can perform future reliability prediction.  

2. When failure data are not available (e.g., software is in 
the design or coding stage), the metrics obtained from the 
software development process and the characteristics of the 
resulting product can be used to determine the reliability of 
the software. 

1.2.1.1 ANALYSIS FOR PREDICTING THE 
NUMBER OF FAULTS 

      The relationship between the number of faults in the 
software before testing, technology advancements and 
complexity of the program, the experience and product 
familiarity of the programmer, effort spent in creating and 
reviewing the specification requirement document, 
designing and coding phase is studied. The response 
variable considered is the number of faults and five 
predictors considered are;  

I. Techno-complexity: (Technology + 
Complexity) 

Assuming that increased complexity and 
advancements in technology lead to 
misinterpretation about the product features. 
II. Practitioner level: (Experience + Product 

familiarity) 
Assuming that the programmers having  less 
experience and less personal knowledge or 
information about the product features are more 
prone to errors and omissions. 

III. Creation Effort:  
Assuming that increased effort spent in the creation 
of the specification requirement document, 
designing phase and in the coding phase introduces 
less faults in the software. Creation effort is 
assessed in terms of the person-hours. 

IV. Review effort: 
Assuming that increased effort spent in the review 
of the specification requirement document, 
designing phase and in the coding phase extracts out 
the faults in the software. Review effort is assessed 
in terms of the person-hours. 

V. Urgency: Percentage compression in 
time. 

Assuming that more number of faults are 
encountered if the time span for completion of the 
software is less. 

      In this section, analysis is performed for predicting the 
expected number of faults in the software for 8 different 
projects (#Table 2.1) before testing. The data was collected 
during the system testing. Since creation effort and review 
effort were found to be independent of the size of the 
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program, therefore both are standardized on a scale from 1 
to 10. All the five controlling parameters including techno-
complexity, practitioner level and urgency are scaled down 
from 1 to 10.  
 

                 Table 2.1: Standardized Data set 

      In this propose software reliability prediction is a 
measure of five factors mentioned above. These combined 
factors can be used to measure the reliability prediction. 
The proposed fuzzy logic based model considers all five 
factors as inputs and provides a crisp value of reliability 
using the Rule Base. All inputs can be classified into fuzzy 
sets viz. Low, Medium and High. The output reliability is 
classified as Very High, High, Medium, Low and Very 
Low. All possible combinations of inputs are considered to 
design the rule base. Each rule corresponds to one of the 
five outputs based on the expert opinions. 2 to 4 Key 
influencing parameters are sufficient to capture the major 
drivers of the number of faults. 
 

2. FUZZY LOGIC: PROPOSED APPROACH 

     This approach presents a method to estimate the 
number of faults in the software in the early phase of its 
development using fuzzy expert rules. The method is 
based on the five factors used in previous chapters that 
influence software quality in the programming 
environment. Fuzzy logic is used to model uncertainty in 
terms of the linguistic variables to quantify imprecision in 
the software reliability estimation. These uncertainties are 
incorporated in the factors that account for the randomness 
as well as lack of knowledge about the system. The 
expected number of faults is then estimated using 
defuzzification techniques, thus providing a greater level 
of information enabling improved decision making. The 
proposed method is more flexible as compared to existing 
methods. Furthermore, because the proposed method uses 
simple alpha cuts operations of fuzzy set using fuzzy rules 
rather than the complicated nonlinear programming 
techniques, it is computationally efficient in calculating 
fuzzy software reliability. 

           2.1     CLASSICAL SETS 

In classical set theory, a set is denoted as a crisp set and 
is described by its characteristic function as follows, [13]; 

 

 
In above equation, U is called the universe of discourse, 
i.e., a collection of elements that can be continuous or 
discrete. In a crisp set each element of the universe of 
discourse either belongs to the crisp set (μ

C
= 1) or does not 

belong to the crisp set (μ
C
= 0). Consider a characteristic 

function μ
C’tall 

representing the crisp set tall, a set with all 

“tall” heights. Fig. 3.1 graphically describes this crisp set, 
considering heights higher than 160cm as tall.   

 

 

 
 
 
 
 
 
 
 
 

2.1.1 Classical Set Operations 

     Let A and B be two sets in the universe U, and μA(x) 
and μB(x) be the characteristic functions of A and B in the 
universe of discourse in sets A and B [1], respectively. The 
characteristic function, [10], μA(x) is defined as follows:  

 

µA (x) = {   

 
 
and μ

B
(x) is defined as; 

µB (x) = { 

Using the above definitions, the following operations are 
defined; 
 
 
                              2.1.1.1 UNION 
     The union between two sets, i.e., C = AỤB where Ụ is 
the union operator, represents all those elements in the 
universe which reside in either the set A or set B. The 
characteristic function μ

C 
is defined below:  

µC (x) = max [µA (x), µB (x)]     

S.NO
. 

Techno-
Complexit

y  

Practitione
r Level  

Revie
w 

effort  

Creatio
n effort  

Urgenc
y  

Actua
l 

Faults 

1 5 8 8 5 0 14 
2 8 5 8 8 2 17 
3 2 8 6 8 0 8 
4 2 8 7 8 0 4 
5 3 7 5 3 0 7 
6 5 7 7 8 3 12 
7 5 7 7 7 2 4 
8 4 4 5 5 0 4 

(2.2) 
0,         x ¢ B 

1,  x є B 

(2.3) 
0,            x ¢ B 

1, x є B

(2.4) 

Height in cm. 

µc 

160 

Fig. 3.1: Crisp set  

µc: U          {0, 1}     (2.1) 
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The operator in above equation is referred to as the max-
operator.  
                              2.1.1.2 INTERSECTION 

        The intersection between two sets, i.e., C = A∩B 
where ∩ is the intersection operator, represents all those 
elements in the universe which reside in set A and set B 
simultaneously. The characteristic function μ

C 
is defined 

below:  

µC (x) = min [µA (x), µB (x)] 
        The operator in above equation is referred to as the 
min-operator 
                               2.1.1.3 COMPLEMENT 

          The complement of a set A, denoted A, is defined as 
the collection of all elements in the universe which do not 

reside in the set A. The characteristic function is A
  

defined by 

                           AA
  1    

    2.2 MEMBERSHIP FORMULATION: 

        The membership functions for fuzzy sets can have 
many different shapes [27], depending on definition. All 
information contained in a fuzzy set is described by its 
membership function. Membership function allows 
assigning a level of membership for any variable “x” to the 
fuzzy set. Many types and shapes of membership functions 
can be used, Fig. 2.3 provides a description of the various 
shapes of membership functions; 

 

(a)Triangular MF                               (b) Trapezoidal MF 

µ                                                      µ                                                          

F      F 
 
(c) Generalized Bell MF                     (d) Gaussian MF 
 
    Fig. 2.3: Membership functions with different shapes 
 
      One of the biggest differences between crisp and fuzzy 
sets is that the former always have unique MFs, whereas 

every fuzzy set has an infinite number of MFs that may 
represent it. This is at once both a weakness and strength; 
uniqueness is sacrificed, but at the same time gives a gain in 
terms of flexibility, enabling fuzzy models to be "adjusted" 
for maximum utility in a given situation. e.g. consider the 
example in which each linguistic variable is fully 
characterized by a quintuple. The performance of the 
system is linguistically defined as Very small, Small, 
Medium, Large, Very large. 
 

3  FUZZY INFERENCE ENGINE 
     The introduction of fuzzy set theory by Professor Lotfi 
A. Zadeh,[1], in 1965. Fuzzy logic provides a convenient 
way to represent Linguistic variables and subjective 
probability. The motivation and justification for fuzzy logic 
is that the linguistic characterizations are less specific than 
the numerical ones. Fuzzy logic targets handling real world 
problems. Most situations in the world require crisp actions; 
these actions (Decisions) are arrived at by processing fuzzy 
information (#Fig. 4.9). Fuzzy logic is used to provide 
means of inferring the fuzzy information to produce crisp 
actions, [12]. 

            3.1     FUZZIFICATION 

     Fuzzification is the process of making the crisp quantity 
“fuzzy”. This allows addressing uncertainty in any 
parameter due to imprecision, ambiguity or vagueness. In 
artificial intelligence, the most common way to represent 
human knowledge is in terms of natural language i.e. 
linguistic variables. Depending upon the data and 
uncertainty, the input and the output parameters are 
fuzzified in terms of linguistic descriptors such as high, 
low, medium, and small to translate them into fuzzy 
variables. e.g. fuzzy boundaries for the parameter “age” 
can be formed by the linguistic expressions such as 
“young”, “middle aged”, and “old”. Thereafter, fuzzy sets 
for the input parameters and the required single output 
parameter are formulated based on the expert’s knowledge 
and experience in the particular domain. 

       There may be other influencing parameters, although 
there are no limits to the number of influencing parameters 
that can be used from a modeling perspective, [21]. For 
practical purposes however, two to four influencing 
parameters are sufficient to capture the major drivers of 
faults. 

     Linguistic descriptors such as High, Low, Medium, 
Small, Large, e.g., are assigned to a range of values for the 
output and for the input parameters. Since these descriptors 
form the basis for capturing expert input on the impact of 
input parameters on the number of faults, it is important to 
calibrate them to how they are commonly interpreted by 
the experts providing input. Referring to a variable as 

(2.5) 

(2.6) 
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High, should evoke the same understanding among the 
experts. 

     Fuzzy sets for the inputs and the required single output 
are formulated based on the expert’s knowledge and 
experience in the particular domain (#Fig. 3.3) as per the 
development standards of the organization.  

     Membership values for the input parameters are 
calculated from the fuzzy sets drawn by the experts. These 
fuzzy sets form the basis for calculating membership 
values as per the specifications of the individual project. 
 

                3.2 INFERENCE 

     Having specified the expected number of faults and its 
influencing parameters, the logical next step is to specify 
how the expected numbers of faults vary as a function of 
the influencing parameters, [13]. Experts provide fuzzy 
rules in the form of if … then statements that relate 
expected number of faults to various levels of influencing 
parameters based on their knowledge and experience. 
Fuzzy processor uses linguistic rules to determine what 
control action should occur in response to a given set of 
input values. Rule evaluation also referred as fuzzy 
inference, evaluates each rule with the inputs that were 
generated from the fuzzification process. 

 Syntax of rules; 
 IF antecedent 1 AND antecedent 2 AND THEN 
Consequent 1 AND ……... 

e.g, considering the rules; 
                             “if A AND B then C.” 
                                “if A’ AND B then C.” 

 For particular crisp input values, the degree of 
truth known as the membership value, for each 
antecedent is determined by using fuzzification 
transformation provided by the experts. All fuzzy 
statements in the antecedent are resolved to a 
degree of membership between 0 and 1.  

Considering the membership values for the above rule as; 

                   μ(x=A)= 0.5, μ(x=B)= 0.6 
                   μ(x=A’)= 0.8, μ(x=B)= 0.6 
     The membership values are obtained from the fuzzy 
sets depending on specific values of the input parameters. 
The shape of a membership function affects the fuzzy 
operation in a subtle way. 

 Find rule strengths; 

     The fuzzy operators AND (Conjunction operator) or 
OR (Disjunction operator) are applied to obtain the degree 
of truth for the consequent of the rule, also known as the 
strength of entire rule, which is equal to the minimum of 
the antecedent degree of truth. This gives,  

                    μ(x=A) ∩ μ(x=B) = 0.5 ∩ 0.6= 0.5 = μ(x=C) 
                    μ(x=A’) ∩ μ(x=B) = 0.8 ∩ 0.6 = 0.6 = μ(x=C)  

 Fuzzy outputs for each consequent label are 
determined which is equal to the maximum rule 
strengths or degree of support for each 
consequent label. For consequent C,  

              Fuzzy output = MAX (0.5, 0.6) = 0.6 

     The rules span all possible scenarios for combinations 
of all the levels of input parameters, thus completely 
mapping the input space of influencing parameters to the 
output space of expected number of faults. Degree of 
support is used for the entire rule to shape the output fuzzy 
set. The consequent of a fuzzy rule assigns an entire fuzzy 
set to the output. This fuzzy set is represented by a 
membership function that is chosen to indicate the qualities 
of the consequent. If the antecedent is only partially true, 
(i.e., is assigned a value less than 1), then the output fuzzy 
set is truncated according to the implication method. 

     In general, one rule by itself doesn't do much good. 
Minimum two or more rules are needed that can play off 
one another. The output of each rule is a fuzzy set. The 
output fuzzy sets for each rule are then aggregated into a 
single output fuzzy set. Finally the resulting set is 
defuzzified, or resolved to a single number. The next 
section shows how the whole process works from 
beginning to end for a particular type of fuzzy inference 
system called a Mamdani type. 

     Mamdani-type inference expects the output 
membership functions to be fuzzy sets. After the 
aggregation process, there is a fuzzy set for each output 
variable that needs defuzzification. It's possible, and in 
many cases much more efficient, to use a single spike as 
the output membership functions rather than a distributed 
fuzzy set. This is sometimes known as a singleton output 
membership function, and it can be thought of as a pre-
defuzzified fuzzy set. It enhances the efficiency of the 
defuzzification process because it greatly simplifies the 
computation required by the more general Mamdani 
method, which finds the centroid of a two-dimensional 
function. Rather than integrating across the two-
dimensional function to find the centroid, the weighted 
average of a few data points is used. Sugeno-type systems 
support this type of model. In general, Sugeno-type 
systems can be used to model any inference system in 
which the output membership functions are either linear or 
constant. 

     3.3 COMPOSITION 

     The inputs are combined logically using the AND 
operator to produce output response values for all expected 
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inputs, [13]. The active conclusions are then combined into 
a logical sum for each membership function. A firing 
strength for each output membership function is computed. 
The fuzzy outputs for all rules are finally aggregated to one 
fuzzy set for various levels of consequent. 

 3.4 DEFUZZIFICATION 

     The logical sums are combined in the defuzzification 
process to produce the crisp output. To obtain a crisp 
decision from this fuzzy output, the fuzzy set, or the set of 
singletons have to be defuzzified. There are several 
heuristic methods (defuzzification methods), one of them 
is e.g. to take the center of gravity, [13], (#Fig. 3.10) of the 
fuzzy set, which is widely used for fuzzy sets. For the 
discrete case with singletons usually the mean of maxima 
method is used where the point with the maximum 
singleton is chosen. 

   

     Centre of gravity, calculates sum of the output and the 
corresponding membership function of the output fuzzy set 
and the weighted sum of the membership function. 
Formally, crisp value is the value located under the centre 
of gravity of the area, [13]. 

4 CONCLUSIONS 

     The actual faults and those obtained by implementing 
fuzzy expert system for predicting the expected number of 
faults before testing in 4 different projects are compiled in 
Table 5.1. 
Table 5.1:  Comparison between actual and predicted 

no. of faults using FL 

      The results above show the good and consistent fault 
predicting accuracy of the proposed model, with 90.2% 
correlation with the actual faults which is considered as 

favorable models. The percentage error is also minimum 
for the proposed approach i.e. 18.72%. Moreover, from the 
results provided by fuzzy logic, the best and worst case 
performance for projects is effectively predicted by this 
method.  

     This analysis has presented a framework in which fuzzy 
expert rules might be used for detecting the number of 
faults in a program. This information is especially useful if 
predictions are to be made early in the life cycle of the 
software development. 

    The proposed method simplifies the difficult task of 
determining the fuzzy reliability of software using 
arithmetic operations of fuzzy sets much easier. 

5 FUTURE SCOPES 
     The future scope is to collect samples of data from some 
more organizations, develop the proposed model and if 
possible validate them. In this proposed approach we can 
add some more parameters to improve the accuracy in 
prediction of software reliability. Implementation of model 
and Validate them. 
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Projects Actual no. of Faults Predicted no. of 
Faults using FL 

1 14 9.17 
2 17 17.5 
3 8 4.14 
4 4 4.14 
Correlation coefficient 0.902 

Percentage error 18.72% 

Fig. 3.1: Defuzzification using Centre-of-Gravity 
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