
How to Increase Quality Measures of Software
Reliability prediction Using Fuzzy Logic

 Shashi Prabha Anan
Department of Computer Science and Engineering

Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh, India

Abstract— Recent years have witnessed a demand for
software development era. In this paper presents a method to
estimate the expected number of faults in the software in the
early phase of its development and is based on the factors that
influence software quality in the programming environment.
The paper includes analysis of the five predicting variables
and the required response variable to predict the early
software reliability based on the previous data available. To
predict the number of faults in the software before testing,
data sets from previous projects are used. To evaluate the
predictive capability of the developed model the predicted
faults are compared with the actual faults. In this paper
identifying the key influencing parameters are Techno-
complexity, Practitioner level, Creation Effort, Review effort,
Urgency.

Keywords— Faults, failure, defects, errors,
estimation, prediction, quality metrics, etc.

1. INTRODUCTION

 A software product can be released only after some pre-
specified reliability criterion has been met at the end of the
development cycle. In recent years, researchers have
proposed a number of analytical models for early software
reliability prediction. The problem of developing reliable
software at low cost remains an open challenge. To develop
a reliable software system, several issues are to be
addressed. These include specification of reliable software,
reliable development methodologies, testing methods for
reliability, reliability growth prediction modeling, and
accurate estimation of reliability. The issue of finding a
common model for all possible software projects is yet to
be solved. Selection of a particular model is very important
in software reliability growth prediction because both the
release date and the resource allocation decision can be
affected by the accuracy of prediction.

 1.1THE NEED FOR RELIABLE SOFTWARE

 The dependence on computers in a person’s daily lives
has been increased as computers are embedded in
wristwatches, telephones, home appliances, buildings,
automobiles, and aircraft. All the industries including
automotive, avionics, oil, telecommunications, banking,

semiconductors, and pharmaceuticals- are highly
dependent on computers for their basic functioning. The
computer revolution is powered by an ever more rapid
technological advancement. Science and technology
demand high-performance hardware and high-quality
software for making improvements.

 The size and complexity of computer-intensive systems
has grown dramatically during the past decade [10], and
the trend will certainly continue in the future.
Contemporary examples of highly complex hardware and
software systems are the projects undertaken by NASA,
the Department of Defense, the new generation air traffic
control system, and a variety of other industries. In the
offices and homes, personal computers cannot function
without complex operating systems (e.g., Windows)
ranging from 1 to 5 million lines of code provide a variety
of applications for our daily use of these computers.

 When the dependencies on computers increase, the
possibility of crises from computer failures also increases
since the demand for complex hardware and software
systems has increased more rapidly than the ability to
design, implement, test, and maintain them. The impact of
these failures ranges from malfunctions of home
appliances to economic damage (e.g., interruptions of
banking systems) to loss of life (e-g., failures of flight
systems or medical software). Therefore, assessing the
reliability of computer systems has become a major
concern for the society.

 Software failures have delayed several high-visibility
programs. Several Space Shuttle missions have been
delayed due to hardware software interaction problems. In
the highly automated aviation industry, misunderstandings
between computers and pilots have been implicated in
several airline crashes. Software failures also have led to
serious consequences in business since a fault in a
switching system's newly released software caused
massive disruption of a major carrier's long-distance
network. Software failures are more insidious and much
more difficult to handle than the physical defects.

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 539

ISSN:0975-9646

1.1.1 SOFTWARE RELIABILITY CONCEPTS
 Software Reliability as an important quality attribute
highly valued by customers and users and has the most
significant impact on the performance. Software Reliability
metric is used to help the managers to guide software
development. Software reliability can be formally defined
as the probability of failure-free software operation in a
specified environment for a specified period of time. A
software failure occurs when the behavior of the software
departs from its specifications, and it is the result of a
software fault, a design defect, being activated by certain
input to the code during its execution. Generally, a
software failure caused by software faults latent in the
system cannot occur except for a special occasion when a
set of special data is put into the system under a special
condition, i.e. the program path including software faults is
executed. Therefore, the software reliability is dependent
on the input data and the internal condition of the program.
In software, an error is usually a programmer action or
omission that results in a fault. A fault is a software defect
that causes a failure, and a failure is the unacceptable
departure of a program operation from program
requirements. When measuring reliability, we are usually
measuring only defects found and defects fixed. Software
reliability analysis is performed at various stages during
the process of engineering software. The analysis results
not only provide feedback to the designers but also become
a measure of software quality.

 1.2 SOFTWARE RELIABILITY MEASUREMENT

 Measurement of software reliability includes two types
of activities [10], reliability estimation and reliability
prediction early during the development phase.

 1.2.1 ESTIMATION
 It is an assessment of how reliable a software system is
now based on observed test data. This activity determines
current software reliability by applying statistical inference
techniques to failure data obtained during system test or
during system operation. Its main purpose is to assess the
current reliability and determine whether a reliability
model is a good fit in retrospect.

 1.2.2 PREDICTION

 This activity determines future software reliability
based upon available software metrics and measures.
Depending on the software development stage, prediction
involves different techniques:

1. When failure data are available (e-g., software is in
system test or operation stage), the estimation techniques

can be used to parameterize and verify software reliability
models, which can perform future reliability prediction.

2. When failure data are not available (e.g., software is in
the design or coding stage), the metrics obtained from the
software development process and the characteristics of the
resulting product can be used to determine the reliability of
the software.

1.2.1.1 ANALYSIS FOR PREDICTING THE
NUMBER OF FAULTS

 The relationship between the number of faults in the
software before testing, technology advancements and
complexity of the program, the experience and product
familiarity of the programmer, effort spent in creating and
reviewing the specification requirement document,
designing and coding phase is studied. The response
variable considered is the number of faults and five
predictors considered are;

I. Techno-complexity: (Technology +
Complexity)

Assuming that increased complexity and
advancements in technology lead to
misinterpretation about the product features.
II. Practitioner level: (Experience + Product

familiarity)
Assuming that the programmers having less
experience and less personal knowledge or
information about the product features are more
prone to errors and omissions.

III. Creation Effort:
Assuming that increased effort spent in the creation
of the specification requirement document,
designing phase and in the coding phase introduces
less faults in the software. Creation effort is
assessed in terms of the person-hours.

IV. Review effort:
Assuming that increased effort spent in the review
of the specification requirement document,
designing phase and in the coding phase extracts out
the faults in the software. Review effort is assessed
in terms of the person-hours.

V. Urgency: Percentage compression in
time.

Assuming that more number of faults are
encountered if the time span for completion of the
software is less.

 In this section, analysis is performed for predicting the
expected number of faults in the software for 8 different
projects (#Table 2.1) before testing. The data was collected
during the system testing. Since creation effort and review
effort were found to be independent of the size of the

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 540

program, therefore both are standardized on a scale from 1
to 10. All the five controlling parameters including techno-
complexity, practitioner level and urgency are scaled down
from 1 to 10.

 Table 2.1: Standardized Data set

 In this propose software reliability prediction is a
measure of five factors mentioned above. These combined
factors can be used to measure the reliability prediction.
The proposed fuzzy logic based model considers all five
factors as inputs and provides a crisp value of reliability
using the Rule Base. All inputs can be classified into fuzzy
sets viz. Low, Medium and High. The output reliability is
classified as Very High, High, Medium, Low and Very
Low. All possible combinations of inputs are considered to
design the rule base. Each rule corresponds to one of the
five outputs based on the expert opinions. 2 to 4 Key
influencing parameters are sufficient to capture the major
drivers of the number of faults.

2. FUZZY LOGIC: PROPOSED APPROACH

 This approach presents a method to estimate the
number of faults in the software in the early phase of its
development using fuzzy expert rules. The method is
based on the five factors used in previous chapters that
influence software quality in the programming
environment. Fuzzy logic is used to model uncertainty in
terms of the linguistic variables to quantify imprecision in
the software reliability estimation. These uncertainties are
incorporated in the factors that account for the randomness
as well as lack of knowledge about the system. The
expected number of faults is then estimated using
defuzzification techniques, thus providing a greater level
of information enabling improved decision making. The
proposed method is more flexible as compared to existing
methods. Furthermore, because the proposed method uses
simple alpha cuts operations of fuzzy set using fuzzy rules
rather than the complicated nonlinear programming
techniques, it is computationally efficient in calculating
fuzzy software reliability.

 2.1 CLASSICAL SETS

In classical set theory, a set is denoted as a crisp set and
is described by its characteristic function as follows, [13];

In above equation, U is called the universe of discourse,
i.e., a collection of elements that can be continuous or
discrete. In a crisp set each element of the universe of
discourse either belongs to the crisp set (μ

C
= 1) or does not

belong to the crisp set (μ
C
= 0). Consider a characteristic

function μ
C’tall

representing the crisp set tall, a set with all

“tall” heights. Fig. 3.1 graphically describes this crisp set,
considering heights higher than 160cm as tall.

2.1.1 Classical Set Operations

 Let A and B be two sets in the universe U, and μA(x)
and μB(x) be the characteristic functions of A and B in the
universe of discourse in sets A and B [1], respectively. The
characteristic function, [10], μA(x) is defined as follows:

µA (x) = {

and μ

B
(x) is defined as;

µB (x) = {

Using the above definitions, the following operations are
defined;

 2.1.1.1 UNION
 The union between two sets, i.e., C = AỤB where Ụ is
the union operator, represents all those elements in the
universe which reside in either the set A or set B. The
characteristic function μ

C
is defined below:

µC (x) = max [µA (x), µB (x)]

S.NO
.

Techno-
Complexit

y

Practitione
r Level

Revie
w

effort

Creatio
n effort

Urgenc
y

Actua
l

Faults

1 5 8 8 5 0 14
2 8 5 8 8 2 17
3 2 8 6 8 0 8
4 2 8 7 8 0 4
5 3 7 5 3 0 7
6 5 7 7 8 3 12
7 5 7 7 7 2 4
8 4 4 5 5 0 4

(2.2)
0, x ¢ B

1, x є B

(2.3)
0, x ¢ B

1, x є B

(2.4)

Height in cm.

µc

160

Fig. 3.1: Crisp set

µc: U {0, 1} (2.1)

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 541

The operator in above equation is referred to as the max-
operator.
 2.1.1.2 INTERSECTION

 The intersection between two sets, i.e., C = A∩B
where ∩ is the intersection operator, represents all those
elements in the universe which reside in set A and set B
simultaneously. The characteristic function μ

C
is defined

below:

µC (x) = min [µA (x), µB (x)]
 The operator in above equation is referred to as the
min-operator
 2.1.1.3 COMPLEMENT

 The complement of a set A, denoted A, is defined as
the collection of all elements in the universe which do not

reside in the set A. The characteristic function is A


defined by

 AA
  1

 2.2 MEMBERSHIP FORMULATION:

 The membership functions for fuzzy sets can have
many different shapes [27], depending on definition. All
information contained in a fuzzy set is described by its
membership function. Membership function allows
assigning a level of membership for any variable “x” to the
fuzzy set. Many types and shapes of membership functions
can be used, Fig. 2.3 provides a description of the various
shapes of membership functions;

(a)Triangular MF (b) Trapezoidal MF

µ µ

F F

(c) Generalized Bell MF (d) Gaussian MF

 Fig. 2.3: Membership functions with different shapes

 One of the biggest differences between crisp and fuzzy
sets is that the former always have unique MFs, whereas

every fuzzy set has an infinite number of MFs that may
represent it. This is at once both a weakness and strength;
uniqueness is sacrificed, but at the same time gives a gain in
terms of flexibility, enabling fuzzy models to be "adjusted"
for maximum utility in a given situation. e.g. consider the
example in which each linguistic variable is fully
characterized by a quintuple. The performance of the
system is linguistically defined as Very small, Small,
Medium, Large, Very large.

3 FUZZY INFERENCE ENGINE
 The introduction of fuzzy set theory by Professor Lotfi
A. Zadeh,[1], in 1965. Fuzzy logic provides a convenient
way to represent Linguistic variables and subjective
probability. The motivation and justification for fuzzy logic
is that the linguistic characterizations are less specific than
the numerical ones. Fuzzy logic targets handling real world
problems. Most situations in the world require crisp actions;
these actions (Decisions) are arrived at by processing fuzzy
information (#Fig. 4.9). Fuzzy logic is used to provide
means of inferring the fuzzy information to produce crisp
actions, [12].

 3.1 FUZZIFICATION

 Fuzzification is the process of making the crisp quantity
“fuzzy”. This allows addressing uncertainty in any
parameter due to imprecision, ambiguity or vagueness. In
artificial intelligence, the most common way to represent
human knowledge is in terms of natural language i.e.
linguistic variables. Depending upon the data and
uncertainty, the input and the output parameters are
fuzzified in terms of linguistic descriptors such as high,
low, medium, and small to translate them into fuzzy
variables. e.g. fuzzy boundaries for the parameter “age”
can be formed by the linguistic expressions such as
“young”, “middle aged”, and “old”. Thereafter, fuzzy sets
for the input parameters and the required single output
parameter are formulated based on the expert’s knowledge
and experience in the particular domain.

 There may be other influencing parameters, although
there are no limits to the number of influencing parameters
that can be used from a modeling perspective, [21]. For
practical purposes however, two to four influencing
parameters are sufficient to capture the major drivers of
faults.

 Linguistic descriptors such as High, Low, Medium,
Small, Large, e.g., are assigned to a range of values for the
output and for the input parameters. Since these descriptors
form the basis for capturing expert input on the impact of
input parameters on the number of faults, it is important to
calibrate them to how they are commonly interpreted by
the experts providing input. Referring to a variable as

(2.5)

(2.6)

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 542

High, should evoke the same understanding among the
experts.

 Fuzzy sets for the inputs and the required single output
are formulated based on the expert’s knowledge and
experience in the particular domain (#Fig. 3.3) as per the
development standards of the organization.

 Membership values for the input parameters are
calculated from the fuzzy sets drawn by the experts. These
fuzzy sets form the basis for calculating membership
values as per the specifications of the individual project.

 3.2 INFERENCE

 Having specified the expected number of faults and its
influencing parameters, the logical next step is to specify
how the expected numbers of faults vary as a function of
the influencing parameters, [13]. Experts provide fuzzy
rules in the form of if … then statements that relate
expected number of faults to various levels of influencing
parameters based on their knowledge and experience.
Fuzzy processor uses linguistic rules to determine what
control action should occur in response to a given set of
input values. Rule evaluation also referred as fuzzy
inference, evaluates each rule with the inputs that were
generated from the fuzzification process.

 Syntax of rules;
 IF antecedent 1 AND antecedent 2 AND THEN
Consequent 1 AND ……...

e.g, considering the rules;
 “if A AND B then C.”
 “if A’ AND B then C.”

 For particular crisp input values, the degree of
truth known as the membership value, for each
antecedent is determined by using fuzzification
transformation provided by the experts. All fuzzy
statements in the antecedent are resolved to a
degree of membership between 0 and 1.

Considering the membership values for the above rule as;

 μ(x=A)= 0.5, μ(x=B)= 0.6
 μ(x=A’)= 0.8, μ(x=B)= 0.6
 The membership values are obtained from the fuzzy
sets depending on specific values of the input parameters.
The shape of a membership function affects the fuzzy
operation in a subtle way.

 Find rule strengths;

 The fuzzy operators AND (Conjunction operator) or
OR (Disjunction operator) are applied to obtain the degree
of truth for the consequent of the rule, also known as the
strength of entire rule, which is equal to the minimum of
the antecedent degree of truth. This gives,

 μ(x=A) ∩ μ(x=B) = 0.5 ∩ 0.6= 0.5 = μ(x=C)
 μ(x=A’) ∩ μ(x=B) = 0.8 ∩ 0.6 = 0.6 = μ(x=C)

 Fuzzy outputs for each consequent label are
determined which is equal to the maximum rule
strengths or degree of support for each
consequent label. For consequent C,

 Fuzzy output = MAX (0.5, 0.6) = 0.6

 The rules span all possible scenarios for combinations
of all the levels of input parameters, thus completely
mapping the input space of influencing parameters to the
output space of expected number of faults. Degree of
support is used for the entire rule to shape the output fuzzy
set. The consequent of a fuzzy rule assigns an entire fuzzy
set to the output. This fuzzy set is represented by a
membership function that is chosen to indicate the qualities
of the consequent. If the antecedent is only partially true,
(i.e., is assigned a value less than 1), then the output fuzzy
set is truncated according to the implication method.

 In general, one rule by itself doesn't do much good.
Minimum two or more rules are needed that can play off
one another. The output of each rule is a fuzzy set. The
output fuzzy sets for each rule are then aggregated into a
single output fuzzy set. Finally the resulting set is
defuzzified, or resolved to a single number. The next
section shows how the whole process works from
beginning to end for a particular type of fuzzy inference
system called a Mamdani type.

 Mamdani-type inference expects the output
membership functions to be fuzzy sets. After the
aggregation process, there is a fuzzy set for each output
variable that needs defuzzification. It's possible, and in
many cases much more efficient, to use a single spike as
the output membership functions rather than a distributed
fuzzy set. This is sometimes known as a singleton output
membership function, and it can be thought of as a pre-
defuzzified fuzzy set. It enhances the efficiency of the
defuzzification process because it greatly simplifies the
computation required by the more general Mamdani
method, which finds the centroid of a two-dimensional
function. Rather than integrating across the two-
dimensional function to find the centroid, the weighted
average of a few data points is used. Sugeno-type systems
support this type of model. In general, Sugeno-type
systems can be used to model any inference system in
which the output membership functions are either linear or
constant.

 3.3 COMPOSITION

 The inputs are combined logically using the AND
operator to produce output response values for all expected

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 543

inputs, [13]. The active conclusions are then combined into
a logical sum for each membership function. A firing
strength for each output membership function is computed.
The fuzzy outputs for all rules are finally aggregated to one
fuzzy set for various levels of consequent.

 3.4 DEFUZZIFICATION

 The logical sums are combined in the defuzzification
process to produce the crisp output. To obtain a crisp
decision from this fuzzy output, the fuzzy set, or the set of
singletons have to be defuzzified. There are several
heuristic methods (defuzzification methods), one of them
is e.g. to take the center of gravity, [13], (#Fig. 3.10) of the
fuzzy set, which is widely used for fuzzy sets. For the
discrete case with singletons usually the mean of maxima
method is used where the point with the maximum
singleton is chosen.

 Centre of gravity, calculates sum of the output and the
corresponding membership function of the output fuzzy set
and the weighted sum of the membership function.
Formally, crisp value is the value located under the centre
of gravity of the area, [13].

4 CONCLUSIONS

 The actual faults and those obtained by implementing
fuzzy expert system for predicting the expected number of
faults before testing in 4 different projects are compiled in
Table 5.1.
Table 5.1: Comparison between actual and predicted

no. of faults using FL

 The results above show the good and consistent fault
predicting accuracy of the proposed model, with 90.2%
correlation with the actual faults which is considered as

favorable models. The percentage error is also minimum
for the proposed approach i.e. 18.72%. Moreover, from the
results provided by fuzzy logic, the best and worst case
performance for projects is effectively predicted by this
method.

 This analysis has presented a framework in which fuzzy
expert rules might be used for detecting the number of
faults in a program. This information is especially useful if
predictions are to be made early in the life cycle of the
software development.

 The proposed method simplifies the difficult task of
determining the fuzzy reliability of software using
arithmetic operations of fuzzy sets much easier.

5 FUTURE SCOPES
 The future scope is to collect samples of data from some
more organizations, develop the proposed model and if
possible validate them. In this proposed approach we can
add some more parameters to improve the accuracy in
prediction of software reliability. Implementation of model
and Validate them.

REFERENCES
[1]. Michael R. Lyu,,”A Handbook of Software Reliability

Engineering”, New York, NY: McGrawHill / IEEE Computer
Society Press. (1996)

[2]. Ann Marie Neufelder, “How to Measure the Impact of Specific
Development.

[3]. Wood A, (1996) “Predicting Software Reliability”, IEEE
Computers, 11:69-77.

[4]. K. Krishna Mohan, A. K. Verma, A. Srividya, (2009) “Selection of
Fuzzy Logic Mechanism for Qualitative Software Reliability
Prediction” ISSRE.

[5]. A. Bertolino, (2007), “Software Testing Research: Achievements,
Challenges, Dreams,” Future of Software Engineering 2007, L.
Briand and A. Wolf (eds.), IEEE-CS Press.

[6]. Agresti and Evanco, “Projecting Software Defects from Analyzing
Ada Desings”, IEEE Transactions on Software Engineering, Vol.
18, No. 11, 1992.

[7]. J. McCall, W. Randell, J. Dunham, L. Lauterbach, “Software
Reliability, Measurement, and Testing Software Reliability and Test
Integration RL-TR-92-52”, Produced for Rome Laboratory, Rome,
NY, 1992.

[8]. Wangbong Lee, Boo-Geum Jung, Jongmoon Baik, (2008), “Early
reliability Prediction: An Approach to software Reliability
Assessment in Open Software Adoption Stage”, IEEE Computer
Society.

[9]. Smidts, et al, (1998), “Software Reliability Modeling: An Approach
to Early Reliability Prediction”, IEEE Transactions on Reliability,
Vol. 47, No. 3, pp 268-278

[10]. H.J. Zimmermann, Fuzzy set theory and its applications, 2nd ed.,
Allied Publisher Ltd, 1996.

[11]. Michael R. Lyu, (2007) “Software Reliability Engineering: A
Roadmap”, IEEE Computers and Information Science, pp 153-170

[12]. K. Krishna Mohan, A. K. Verma, A. Srividya, (2009) “Selection of
Fuzzy Logic Mechanism for Qualitative Software Reliability
Prediction” ISSRE.

[13]. Riza C. Berkan, Sheldon L. Trubatch, “Fuzzy Systems Design
Principles”, Building Fuzzy IF-THEN Rule Bases; IEEE
PRESS, pp:70, 1997.

[14]. Military Handbook, “Electronic Design Handbook”, pp 9-35 to 9-
37, 1998.

Projects Actual no. of Faults Predicted no. of
Faults using FL

1 14 9.17
2 17 17.5
3 8 4.14
4 4 4.14
Correlation coefficient 0.902

Percentage error 18.72%

Fig. 3.1: Defuzzification using Centre-of-Gravity

Shashi Prabha Anan/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,539-544

www.ijcsit.com 544

